Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 18 de 18
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
J Exp Clin Cancer Res ; 43(1): 27, 2024 Jan 23.
Artigo em Inglês | MEDLINE | ID: mdl-38254102

RESUMO

BACKGROUND: Peritoneal metastasis, which accounts for 85% of all epithelial ovarian carcinoma (EOC) metastases, is a multistep process that requires the establishment of adhesive interactions between cancer cells and the peritoneal membrane. Interrelations between EOC and the mesothelial stroma are critical to facilitate the metastatic process. No data is available so far on the impact of histone acetylation/deacetylation, a potentially relevant mechanism governing EOC metastasis, on mesothelial cells (MCs)-mediated adhesion. METHODS: Static adhesion and peritoneal clearance experiments were performed pretreating mesenchymal-like MCs and platinum-sensitive/resistant EOC cell lines with MS-275-a Histone deacetylase (HDAC)1-3 pharmacological inhibitor currently used in combination trials. Results were acquired by confocal microscopy and were analyzed with an automated Opera software. The role of HDAC1/2 was validated by genetic silencing. The role of α4-, α5-α1 Integrins and Fibronectin-1 was validated using specific monoclonal antibodies. Quantitative proteomic analysis was performed on primary MCs pretreated with MS-275. Decellularized matrices were generated from either MS-275-exposed or untreated cells to study Fibronectin-1 extracellular secretion. The effect of MS-275 on ß1 integrin activity was assessed using specific monoclonal antibodies. The role of Talin-1 in MCs/EOC adhesion was analyzed by genetic silencing. Talin-1 ectopic expression was validated as a rescue tool from MS-275-induced phenotype. The in vivo effect of MS-275-induced MC remodeling was validated in a mouse model of peritoneal EOC dissemination. RESULTS: Treatment of MCs with non-cytotoxic concentrations of MS-275 caused a consistent reduction of EOC adhesion. Proteomic analysis revealed several pathways altered upon MC treatment with MS-275, including ECM deposition/remodeling, adhesion receptors and actin cytoskeleton regulators. HDAC1/2 inhibition hampered actin cytoskeleton polymerization by downregulating actin regulators including Talin-1, impairing ß1 integrin activation, and leading to abnormal extracellular secretion and distribution of Fibronectin-1. Talin-1 ectopic expression rescued EOC adhesion to MS-275-treated MCs. In an experimental mouse model of metastatic EOC, MS-275 limited tumor invasion, Fibronectin-1 secretion and the sub-mesothelial accumulation of MC-derived carcinoma-associated fibroblasts. CONCLUSION: Our study unveils a direct impact of HDAC-1/2 in the regulation of MC/EOC adhesion and highlights the regulation of MC plasticity by epigenetic inhibition as a potential target for therapeutic intervention in EOC peritoneal metastasis.


Assuntos
Benzamidas , Carcinoma Epitelial do Ovário , Adesão Celular , Histona Desacetilase 1 , Histona Desacetilase 2 , Neoplasias Ovarianas , Neoplasias Peritoneais , Animais , Feminino , Humanos , Camundongos , Citoesqueleto de Actina/metabolismo , Anticorpos Monoclonais , Carcinoma Epitelial do Ovário/metabolismo , Epitélio , Proteínas da Matriz Extracelular/metabolismo , Fibronectinas , Histona Desacetilase 1/metabolismo , Integrina alfa5 , Integrina beta1/genética , Neoplasias Ovarianas/genética , Neoplasias Ovarianas/metabolismo , Neoplasias Peritoneais/genética , Neoplasias Peritoneais/metabolismo , Proteômica , Piridinas , Talina/genética , Talina/metabolismo , Histona Desacetilase 2/metabolismo , Adesão Celular/genética
2.
Gels ; 9(10)2023 Oct 05.
Artigo em Inglês | MEDLINE | ID: mdl-37888374

RESUMO

Bioengineered hydrogels represent physiologically relevant platforms for cell behaviour studies in the tissue engineering and regenerative medicine fields, as well as in in vitro disease models. Hyaluronic acid (HA) is an ideal platform since it is a natural biocompatible polymer that is widely used to study cellular crosstalk, cell adhesion and cell proliferation, and is one of the major components of the extracellular matrix (ECM). We synthesised chemically modified HA with photo-crosslinkable methacrylated groups (HA-MA) in aqueous solutions and in strictly monitored pH and temperature conditions to obtain hydrogels with controlled bulk properties. The physical and chemical properties of the different HA-MA hydrogels were investigated via rheological studies, mechanical testing and scanning electron microscopy (SEM) imaging, which allowed us to determine the optimal biomechanical properties and develop a biocompatible scaffold. The morphological evolution processes and proliferation rates of glioblastoma cells (U251-MG) cultured on HA-MA surfaces were evaluated by comparing 2D structures with 3D structures, showing that the change in dimensionality impacted cell functions and interactions. The cell viability assays and evaluation of mitochondrial metabolism showed that the hydrogels did not interfere with cell survival. In addition, morphological studies provided evidence of cell-matrix interactions that promoted cell budding from the spheroids and the invasiveness in the surrounding environment.

3.
Front Cell Infect Microbiol ; 13: 1161669, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37153157

RESUMO

Introduction: Recent evidence suggests that the bone marrow (BM) plays a key role in the diffusion of P. falciparum malaria by providing a "niche" for the maturation of the parasite gametocytes, responsible for human-to-mosquito transmission. Suitable humanized in vivo models to study the mechanisms of the interplay between the parasite and the human BM components are still missing. Methods: We report a novel experimental system based on the infusion of immature P. falciparum gametocytes into immunocompromised mice carrying chimeric ectopic ossicles whose stromal and bone compartments derive from human osteoprogenitor cells. Results: We demonstrate that immature gametocytes home within minutes to the ossicles and reach the extravascular regions, where they are retained in contact with different human BM stromal cell types. Discussion: Our model represents a powerful tool to study BM function and the interplay essential for parasite transmission in P. falciparum malaria and can be extended to study other infections in which the human BM plays a role.


Assuntos
Malária Falciparum , Malária , Parasitos , Humanos , Animais , Camundongos , Plasmodium falciparum , Medula Óssea/parasitologia , Malária Falciparum/parasitologia
4.
Exp Dermatol ; 32(6): 787-798, 2023 06.
Artigo em Inglês | MEDLINE | ID: mdl-36789506

RESUMO

Hailey-Hailey disease (HHD) is a rare autosomal dominantly inherited disorder caused by mutations in the ATP2C1 gene that encodes an adenosine triphosphate (ATP)-powered calcium channel pump. HHD is characterized by impaired epidermal cell-to-cell adhesion and defective keratinocyte growth/differentiation. The mechanism by which mutant ATP2C1 causes HHD is unknown and current treatments for affected individuals do not address the underlying defects and are ineffective. Notch signalling is a direct determinant of keratinocyte growth and differentiation. We found that loss of ATP2C1 leads to impaired Notch1 signalling, thus deregulation of the Notch signalling response is therefore likely to contribute to HHD manifestation. NOTCH1 is a transmembrane receptor and upon ligand binding, the intracellular domain (NICD) translocates to the nucleus activating its target genes. In the context of HHD, we found that loss of ATP2C1 function promotes upregulation of the active NOTCH1 protein (NICD-Val1744). Here, deeply exploring this aspect, we observed that NOTCH1 activation is not associated with the transcriptional enhancement of its targets. Moreover, in agreement with these results, we found a cytoplasmic localization of NICD-Val1744. We have also observed that ATP2C1-loss is associated with the degradation of NICD-Val1744 through the lysosomal/proteasome pathway. These results show that ATP2C1-loss could promote a mechanism by which NOTCH1 is endocytosed and degraded by the cell membrane. The deregulation of this phenomenon, finely regulated in physiological conditions, could in HHD lead to the deregulation of NOTCH1 with alteration of skin homeostasis and disease manifestation.


Assuntos
Pênfigo Familiar Benigno , Humanos , Pênfigo Familiar Benigno/genética , Pênfigo Familiar Benigno/metabolismo , Pele/metabolismo , Queratinócitos/metabolismo , Mutação , Epiderme/metabolismo , ATPases Transportadoras de Cálcio/genética , ATPases Transportadoras de Cálcio/metabolismo , Receptor Notch1/genética , Receptor Notch1/metabolismo
5.
Int J Mol Sci ; 23(3)2022 Feb 08.
Artigo em Inglês | MEDLINE | ID: mdl-35163819

RESUMO

While blue LED (b-LED) light is increasingly being studied for its cytotoxic activity towards bacteria in therapy of skin-related infections, its effects on eukaryotic cells plasticity are less well characterized. Moreover, since different protocols are often used, comparing the effect of b-LED towards both microorganisms and epithelial surfaces may be difficult. The aim of this study was to analyze, in the same experimental setting, both the bactericidal activity and the effects on human keratinocytes. Exposure to b-LED induced an intense cytocidal activity against Gram-positive (i.e, Staphylococcus aureus) and Gram-negative (i.e., Pseudomonas aeruginosa) bacteria associated with catheter-related infections. Treatment with b-LED of a human keratinocyte cell line induced a transient cell cycle arrest. At the molecular level, exposure to b-LED induced a transient downregulation of Cyclin D1 and an upregulation of p21, but not signs of apoptosis. Interestingly, a transient induction of phosphor-histone γ-H2Ax, which is associated with genotoxic damages, was observed. At the same time, keratinocytes underwent a transient epithelial to mesenchymal transition (EMT)-like phenotype, characterized by E-cadherin downregulation and SNAIL/SLUG induction. As a functional readout of EMT induction, a scratch assay was performed. Surprisingly, b-LED treatment provoked a delay in the scratch closure. In conclusion, we demonstrated that b-LED microbicidal activity is associated with complex responses in keratinocytes that certainly deserve further analysis.


Assuntos
Pontos de Checagem do Ciclo Celular/efeitos da radiação , Queratinócitos/citologia , Luz/efeitos adversos , Pseudomonas aeruginosa/crescimento & desenvolvimento , Staphylococcus aureus/crescimento & desenvolvimento , Antígenos CD/metabolismo , Caderinas/metabolismo , Proliferação de Células , Ciclina D1/metabolismo , Inibidor de Quinase Dependente de Ciclina p21/metabolismo , Síndrome de Down , Transição Epitelial-Mesenquimal/efeitos da radiação , Regulação da Expressão Gênica/efeitos dos fármacos , Células HaCaT , Humanos , Queratinócitos/metabolismo , Queratinócitos/efeitos da radiação , Viabilidade Microbiana/efeitos da radiação , Pseudomonas aeruginosa/efeitos da radiação , Fatores de Transcrição da Família Snail/metabolismo , Staphylococcus aureus/efeitos da radiação
6.
Commun Biol ; 4(1): 1025, 2021 09 01.
Artigo em Inglês | MEDLINE | ID: mdl-34471224

RESUMO

Mutations in the RNA-binding protein (RBP) FUS have been genetically associated with the motoneuron disease amyotrophic lateral sclerosis (ALS). Using both human induced pluripotent stem cells and mouse models, we found that FUS-ALS causative mutations affect the activity of two relevant RBPs with important roles in neuronal RNA metabolism: HuD/ELAVL4 and FMRP. Mechanistically, mutant FUS leads to upregulation of HuD protein levels through competition with FMRP for HuD mRNA 3'UTR binding. In turn, increased HuD levels overly stabilize the transcript levels of its targets, NRN1 and GAP43. As a consequence, mutant FUS motoneurons show increased axon branching and growth upon injury, which could be rescued by dampening NRN1 levels. Since similar phenotypes have been previously described in SOD1 and TDP-43 mutant models, increased axonal growth and branching might represent broad early events in the pathogenesis of ALS.


Assuntos
Axônios/metabolismo , Proteína Semelhante a ELAV 4/genética , Proteína do X Frágil da Deficiência Intelectual/genética , Proteína FUS de Ligação a RNA/genética , Animais , Linhagem Celular , Proteína Semelhante a ELAV 4/metabolismo , Proteína do X Frágil da Deficiência Intelectual/metabolismo , Humanos , Camundongos , Neurônios Motores/metabolismo , Mutação , Proteína FUS de Ligação a RNA/metabolismo
8.
FASEB J ; 34(6): 7675-7686, 2020 06.
Artigo em Inglês | MEDLINE | ID: mdl-32304340

RESUMO

Mutations in mitochondrial transfer RNA (mt-tRNA) genes are responsible for a wide range of syndromes, for which no effective treatment is available. We previously reported that transfection of the nucleotide sequence encoding for the 16-residue ß32_33 peptide from mitochondrial leucyl-tRNA synthetase ameliorates the cell phenotype caused by the mitochondrial tRNA mutations. In this work, we demonstrated that both the ß32_33 peptide linked with the known (L)-Phe-(D)-Arg-(L)-Phe-(L)-Lys (FrFK) mitochondrial penetrating sequence and, strikingly, the ß32_33 peptide per se, are able to penetrate both the plasma and mitochondrial membranes and exert the rescuing activity when exogenously administered to cells bearing the mutations m.3243A > G and m.8344A > G. These mutations are responsible for the most common and severe mt-tRNA-related diseases. In addition, we dissected the molecular determinants of constructs activity by showing that both the order of amino acids along the sequence and presence of positive charges are essential determinants of the peptide activity in cells and mt-tRNA structures stabilization in vitro. In view of future in vivo studies, this information may be required to design of ß32_33 peptide-mimetic derivatives. The ß32_33 and FrFK-ß32_33 peptides are, therefore, promising molecules for the development of therapeutic agents against diseases caused by the mt-tRNA point mutations.


Assuntos
Mitocôndrias/metabolismo , Doenças Mitocondriais/metabolismo , Membranas Mitocondriais/metabolismo , Peptídeos/metabolismo , RNA de Transferência/metabolismo , Aminoácidos/metabolismo , Linhagem Celular , Humanos , Mutação Puntual/fisiologia
9.
Cell Rep ; 27(13): 3818-3831.e5, 2019 06 25.
Artigo em Inglês | MEDLINE | ID: mdl-31242416

RESUMO

Amyotrophic lateral sclerosis (ALS) has been genetically linked to mutations in RNA-binding proteins (RBPs), including FUS. Here, we report the RNA interactome of wild-type and mutant FUS in human motor neurons (MNs). This analysis identified a number of RNA targets. Whereas the wild-type protein preferentially binds introns, the ALS mutation causes a shift toward 3' UTRs. Neural ELAV-like RBPs are among mutant FUS targets. As a result, ELAVL4 protein levels are increased in mutant MNs. ELAVL4 and mutant FUS interact and co-localize in cytoplasmic speckles with altered biomechanical properties. Upon oxidative stress, ELAVL4 and mutant FUS are engaged in stress granules. In the spinal cord of FUS ALS patients, ELAVL4 represents a neural-specific component of FUS-positive cytoplasmic aggregates, whereas in sporadic patients it co-localizes with phosphorylated TDP-43-positive inclusions. We propose that pathological mutations in FUS trigger an aberrant crosstalk with ELAVL4 with implications for ALS.


Assuntos
Esclerose Lateral Amiotrófica/metabolismo , Citoplasma/metabolismo , Proteína Semelhante a ELAV 4/metabolismo , Mutação , Proteína FUS de Ligação a RNA/metabolismo , Regiões 3' não Traduzidas , Esclerose Lateral Amiotrófica/genética , Esclerose Lateral Amiotrófica/patologia , Citoplasma/genética , Citoplasma/patologia , Proteínas de Ligação a DNA/genética , Proteínas de Ligação a DNA/metabolismo , Proteína Semelhante a ELAV 4/genética , Humanos , Células-Tronco Pluripotentes Induzidas/metabolismo , Células-Tronco Pluripotentes Induzidas/patologia , Estresse Oxidativo/genética , Proteína FUS de Ligação a RNA/genética
10.
Sci Rep ; 8(1): 8492, 2018 05 31.
Artigo em Inglês | MEDLINE | ID: mdl-29855565

RESUMO

Peritoneal fibrosis is a pathological alteration of the peritoneal membrane occurring in a variety of conditions including peritoneal dialysis (PD), post-surgery adhesions and peritoneal metastases. The acquisition of invasive and pro-fibrotic abilities by mesothelial cells (MCs) through induction of MMT, a cell-specific form of EMT, plays a main role in this process. Aim of this study was to evaluate possible effects of histone deacetylase (HDAC) inhibitors, key components of the epigenetic machinery, in counteracting MMT observed in MCs isolated from effluent of PD patients. HDAC inhibitors with different class/isoform selectivity have been used for pharmacological inhibition. While the effect of other inhibitors was limited to a partial E-cadherin re-expression, MS-275, a HDAC1-3 inhibitor, promoted: (i) downregulation of mesenchymal markers (MMP2, Col1A1, PAI-1, TGFß1, TGFßRI) (ii) upregulation of epithelial markers (E-cadherin, Occludin), (iii) reacquisition of an epithelial-like morphology and (iv) marked reduction of cellular invasiveness. Results were confirmed by HDAC1 genetic silencing. Mechanistically, MS-275 causes: (i) increase of nuclear histone H3 acetylation (ii) rescue of the acetylation profile on E-cadherin promoter, (iii) Snail functional impairment. Overall, our study, pinpointing a role for HDAC1, revealed a new player in the regulation of peritoneal fibrosis, providing the rationale for future therapeutic opportunities.


Assuntos
Benzamidas/farmacologia , Transição Epitelial-Mesenquimal/efeitos dos fármacos , Histona Desacetilase 1/antagonistas & inibidores , Inibidores de Histona Desacetilases/farmacologia , Piridinas/farmacologia , Idoso , Idoso de 80 Anos ou mais , Caderinas/metabolismo , Movimento Celular/efeitos dos fármacos , Células Epiteliais/citologia , Células Epiteliais/metabolismo , Feminino , Histona Desacetilase 1/genética , Histona Desacetilase 1/metabolismo , Humanos , Falência Renal Crônica/metabolismo , Falência Renal Crônica/patologia , Masculino , Pessoa de Meia-Idade , Diálise Peritoneal , Peritônio/citologia , Interferência de RNA , RNA Interferente Pequeno/metabolismo , Fatores de Transcrição da Família Snail/metabolismo , Fator de Crescimento Transformador beta1/metabolismo
11.
RSC Adv ; 8(23): 12815-12822, 2018 Apr 03.
Artigo em Inglês | MEDLINE | ID: mdl-35541244

RESUMO

Ferritin self-assembly has been widely exploited for the synthesis of a variety of nanoparticles for drug-delivery and diagnostic applications. However, despite the crucial role of ferritin self-assembly mechanism for probes encapsulation, little is known about the principles behind the oligomerization mechanism. In the present work, the novel "humanized" chimeric Archaeal ferritin HumAfFt, displaying the transferrin receptor-1 (TfR1) recognition motif typical of human H homopolymer and the unique salt-triggered oligomerization properties of Archaeoglobus fulgidus ferritin (AfFt), was site-selectively labeled with N-(1-pyrenyl)maleimide on a topologically selected cysteine residue inside the protein cavity, next to the dimer interface. Pyrene characteristic fluorescence features were exploited to investigate the transition from a dimeric to a cage-like 24-meric state and to visualize the protein in vitro by two photon fluorescence microscopy. Indeed, pyrene fluorescence changes upon ferritin self-assembly allowed to establish, for the first time, the kinetic and thermodynamic details of the archaeal ferritins oligomerization mechanism. In particular, the magnesium induced oligomerization proved to be faster than the monovalent cation-triggered process, highly cooperative, complete at low MgCl2 concentrations, and reversed by treatment with EDTA. Moreover, pyrene intense excimer fluorescence was successfully visualized in vitro by two photon fluorescence microscopy as pyrene-labeled HumAfFt was actively uptaken into HeLa cells by human transferrin receptor TfR1 recognition, thus representing a unique nano-device building block for two photon fluorescence cell imaging.

12.
Stem Cell Reports ; 9(5): 1450-1462, 2017 11 14.
Artigo em Inglês | MEDLINE | ID: mdl-28988989

RESUMO

The FUS gene has been linked to amyotrophic lateral sclerosis (ALS). FUS is a ubiquitous RNA-binding protein, and the mechanisms leading to selective motoneuron loss downstream of ALS-linked mutations are largely unknown. We report the transcriptome analysis of human purified motoneurons, obtained from FUS wild-type or mutant isogenic induced pluripotent stem cells (iPSCs). Gene ontology analysis of differentially expressed genes identified significant enrichment of pathways previously associated to sporadic ALS and other neurological diseases. Several microRNAs (miRNAs) were also deregulated in FUS mutant motoneurons, including miR-375, involved in motoneuron survival. We report that relevant targets of miR-375, including the neural RNA-binding protein ELAVL4 and apoptotic factors, are aberrantly increased in FUS mutant motoneurons. Characterization of transcriptome changes in the cell type primarily affected by the disease contributes to the definition of the pathogenic mechanisms of FUS-linked ALS.


Assuntos
Esclerose Lateral Amiotrófica/etiologia , MicroRNAs/genética , Neurônios Motores/metabolismo , Proteína FUS de Ligação a RNA/genética , Transcriptoma , Apoptose , Células Cultivadas , Proteína Semelhante a ELAV 4/genética , Proteína Semelhante a ELAV 4/metabolismo , Humanos , Células-Tronco Pluripotentes Induzidas/citologia , Células-Tronco Pluripotentes Induzidas/metabolismo , MicroRNAs/metabolismo , Neurônios Motores/citologia , Mutação , Neurogênese
13.
Sci Rep ; 7(1): 10445, 2017 09 05.
Artigo em Inglês | MEDLINE | ID: mdl-28874810

RESUMO

Natural Killer cells are innate lymphocytes involved in tumor immunosurveillance. They express activating receptors able to recognize self-molecules poorly expressed on healthy cells but up-regulated upon stress conditions, including transformation. Regulation of ligand expression in tumor cells mainly relays on transcriptional mechanisms, while the involvement of ubiquitin or ubiquitin-like modifiers remains largely unexplored. Here, we focused on the SUMO pathway and demonstrated that the ligand of DNAM1 activating receptor, PVR, undergoes SUMOylation in multiple myeloma. Concurrently, we found that PVR is preferentially located in intracellular compartments in human multiple myeloma cell lines and malignant plasma cells and that inhibition of the SUMO pathway promotes its translocation to the cell surface, increasing tumor cell susceptibility to NK cell-mediated cytolysis. Our findings provide the first evidence of an innate immune activating ligand regulated by SUMOylation, and confer to this modification a novel role in impairing recognition and killing of tumor cells.


Assuntos
Antígenos de Diferenciação de Linfócitos T/metabolismo , Imunidade Inata , Células Matadoras Naturais/imunologia , Células Matadoras Naturais/metabolismo , Neoplasias/imunologia , Neoplasias/metabolismo , Biomarcadores , Linhagem Celular Tumoral , Membrana Celular/metabolismo , Citotoxicidade Imunológica , Expressão Gênica , Humanos , Espaço Intracelular , Mieloma Múltiplo/imunologia , Mieloma Múltiplo/metabolismo , Nectinas/genética , Nectinas/metabolismo , Transporte Proteico , Receptores Virais/genética , Receptores Virais/metabolismo , Transdução de Sinais , Sumoilação
14.
J Cell Sci ; 130(15): 2564-2578, 2017 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-28600321

RESUMO

Protein conjugation with small ubiquitin-related modifier (SUMO) is a post-translational modification that modulates protein interactions and localisation. RANBP2 is a large nucleoporin endowed with SUMO E3 ligase and SUMO-stabilising activity, and is implicated in some cancer types. RANBP2 is part of a larger complex, consisting of SUMO-modified RANGAP1, the GTP-hydrolysis activating factor for the GTPase RAN. During mitosis, the RANBP2-SUMO-RANGAP1 complex localises to the mitotic spindle and to kinetochores after microtubule attachment. Here, we address the mechanisms that regulate this localisation and how they affect kinetochore functions. Using proximity ligation assays, we find that nuclear transport receptors importin-ß and CRM1 play essential roles in localising the RANBP2-SUMO-RANGAP1 complex away from, or at kinetochores, respectively. Using newly generated inducible cell lines, we show that overexpression of nuclear transport receptors affects the timing of RANBP2 localisation in opposite ways. Concomitantly, kinetochore functions are also affected, including the accumulation of SUMO-conjugated topoisomerase-IIα and stability of kinetochore fibres. These results delineate a novel mechanism through which nuclear transport receptors govern the functional state of kinetochores by regulating the timely deposition of RANBP2.


Assuntos
Carioferinas/metabolismo , Cinetocoros/metabolismo , Chaperonas Moleculares/metabolismo , Complexo de Proteínas Formadoras de Poros Nucleares/metabolismo , Receptores Citoplasmáticos e Nucleares/metabolismo , beta Carioferinas/metabolismo , Proteínas Ativadoras de GTPase/genética , Proteínas Ativadoras de GTPase/metabolismo , Células HeLa , Humanos , Carioferinas/genética , Chaperonas Moleculares/genética , Complexo de Proteínas Formadoras de Poros Nucleares/genética , Receptores Citoplasmáticos e Nucleares/genética , Proteína SUMO-1/genética , Proteína SUMO-1/metabolismo , beta Carioferinas/genética , Proteína Exportina 1
15.
Nanoscale ; 9(2): 647-655, 2017 Jan 05.
Artigo em Inglês | MEDLINE | ID: mdl-27942679

RESUMO

Human ferritins have been extensively studied to be used as nanocarriers for diverse applications and could represent a convenient alternative for targeted delivery of anticancer drugs and imaging agents. However, the most relevant limitation to their applications is the need for highly acidic experimental conditions during the initial steps of particle/cargo assembly, a process that could affect both drug stability and the complete reassembly of the ferritin cage. To overcome this issue the unique assembly of Archaeoglobus fulgidus ferritin was genetically engineered by changing a surface exposed loop of 12 amino acids connecting B and C helices to mimic the sequence of the analogous human H-chain ferritin loop. This new chimeric protein was shown to maintain the unique, cation linked, association-dissociation properties of Archaeoglobus fulgidus ferritin occurring at neutral pH values, while exhibiting the typical human H-homopolymer recognition by the transferrin receptor TfR1. The chimeric protein was confirmed to be actively and specifically internalized by HeLa cells, thus representing a unique nanotechnological tool for cell-targeted delivery of possible payloads for diagnostic or therapeutic purposes. Moreover, it was demonstrated that the 12 amino acids' loop is necessary and sufficient for binding to the transferrin receptor. The three-dimensional structure of the humanized Archaeoglobus ferritin has been obtained both as crystals by X-ray diffraction and in solution by cryo-EM.


Assuntos
Archaeoglobus fulgidus/química , Sistemas de Liberação de Medicamentos , Ferritinas/química , Engenharia de Proteínas , Antígenos CD/química , Apoferritinas/química , Células HeLa , Humanos , Receptores da Transferrina/química
16.
Dis Model Mech ; 8(7): 755-66, 2015 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-26035390

RESUMO

Patient-derived induced pluripotent stem cells (iPSCs) provide an opportunity to study human diseases mainly in those cases for which no suitable model systems are available. Here, we have taken advantage of in vitro iPSCs derived from patients affected by amyotrophic lateral sclerosis (ALS) and carrying mutations in the RNA-binding protein FUS to study the cellular behavior of the mutant proteins in the appropriate genetic background. Moreover, the ability to differentiate iPSCs into spinal cord neural cells provides an in vitro model mimicking the physiological conditions. iPSCs were derived from FUS(R514S) and FUS(R521C) patient fibroblasts, whereas in the case of the severe FUS(P525L) mutation, in which fibroblasts were not available, a heterozygous and a homozygous iPSC line were raised by TALEN-directed mutagenesis. We show that aberrant localization and recruitment of FUS into stress granules (SGs) is a prerogative of the FUS mutant proteins and occurs only upon induction of stress in both undifferentiated iPSCs and spinal cord neural cells. Moreover, we show that the incorporation into SGs is proportional to the amount of cytoplasmic FUS, strongly correlating with the cytoplasmic delocalization phenotype of the different mutants. Therefore, the available iPSCs represent a very powerful system for understanding the correlation between FUS mutations, the molecular mechanisms of SG formation and ALS ethiopathogenesis.


Assuntos
Esclerose Lateral Amiotrófica/metabolismo , Esclerose Lateral Amiotrófica/patologia , Neurônios Motores/metabolismo , Neurônios Motores/patologia , Proteínas Mutantes/metabolismo , Proteína FUS de Ligação a RNA/metabolismo , Transporte Ativo do Núcleo Celular , Substituição de Aminoácidos , Esclerose Lateral Amiotrófica/genética , Diferenciação Celular , Linhagem Celular , Grânulos Citoplasmáticos/metabolismo , Grânulos Citoplasmáticos/patologia , Humanos , Células-Tronco Pluripotentes Induzidas/metabolismo , Células-Tronco Pluripotentes Induzidas/patologia , Modelos Neurológicos , Mutagênese Sítio-Dirigida , Proteínas Mutantes/genética , Proteína FUS de Ligação a RNA/genética , Medula Espinal/metabolismo , Medula Espinal/patologia , Estresse Fisiológico
17.
Elife ; 32014 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-25271374

RESUMO

Synthesis of mRNA in eukaryotes involves the coordinated action of many enzymatic processes, including initiation, elongation, splicing, and cleavage. Kinetic competition between these processes has been proposed to determine RNA fate, yet such coupling has never been observed in vivo on single transcripts. In this study, we use dual-color single-molecule RNA imaging in living human cells to construct a complete kinetic profile of transcription and splicing of the ß-globin gene. We find that kinetic competition results in multiple competing pathways for pre-mRNA splicing. Splicing of the terminal intron occurs stochastically both before and after transcript release, indicating there is not a strict quality control checkpoint. The majority of pre-mRNAs are spliced after release, while diffusing away from the site of transcription. A single missense point mutation (S34F) in the essential splicing factor U2AF1 which occurs in human cancers perturbs this kinetic balance and defers splicing to occur entirely post-release.


Assuntos
Processamento Pós-Transcricional do RNA/genética , RNA/genética , Transcrição Gênica , Linhagem Celular Tumoral , Sobrevivência Celular , Cromatina/metabolismo , Sistemas Computacionais , Difusão , Humanos , Cinética , Proteínas Mutantes/metabolismo , Mutação/genética , Neoplasias/genética , Proteínas Nucleares/metabolismo , Splicing de RNA/genética , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Ribonucleoproteínas/metabolismo , Fator de Processamento U2AF , Processos Estocásticos , Globinas beta/genética , Globinas beta/metabolismo
18.
Nat Struct Mol Biol ; 14(9): 796-806, 2007 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-17676063

RESUMO

We imaged transcription in living cells using a locus-specific reporter system, which allowed precise, single-cell kinetic measurements of promoter binding, initiation and elongation. Photobleaching of fluorescent RNA polymerase II revealed several kinetically distinct populations of the enzyme interacting with a specific gene. Photobleaching and photoactivation of fluorescent MS2 proteins used to label nascent messenger RNAs provided sensitive elongation measurements. A mechanistic kinetic model that fits our data was validated using specific inhibitors. Polymerases elongated at 4.3 kilobases min(-1), much faster than previously documented, and entered a paused state for unexpectedly long times. Transcription onset was inefficient, with only 1% of polymerase-gene interactions leading to completion of an mRNA. Our systems approach, quantifying both polymerase and mRNA kinetics on a defined DNA template in vivo with high temporal resolution, opens new avenues for studying regulation of transcriptional processes in vivo.


Assuntos
RNA Polimerase II/genética , Transcrição Gênica , Sequência de Bases , Linhagem Celular Tumoral , Primers do DNA , Humanos , Hibridização in Situ Fluorescente , Cinética , Fosforilação , Fotoquímica , RNA Polimerase II/metabolismo , Transcrição Gênica/efeitos dos fármacos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA